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Abstract
We study bifurcations of the period function of a linear centre perturbed by
third degree homogeneous polynomials. The approach is based on making use
of algorithms of computational algebra.
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1. Introduction

Let F(ρ, λ) (ρ ∈ R, λ = (λ1, . . . , λn) ∈ E ⊂ Rn) be an analytic function. We write it near
ρ = 0 in the form

F(ρ, λ) =
∞∑

k=0

fk(λ)ρk (1)

where, for each integer k � 0, fk(λ) is an analytic function and the series (1) is convergent
in a neighbourhood of ρ = 0. Denote by nλ,ε the number of isolated zeros of F(ρ, λ) in the
interval 0 < ρ < ε.

Definition 1. Let λ∗ ∈ E be such that F(ρ, λ∗) = 0. We say that the multiplicity of F(ρ, λ)

at λ∗ with respect to the set E is equal to m if there exist δ0 > 0 and ε0 > 0, such that for every
0 < ε < ε0 and 0 < δ < δ0

max
λ∈Uδ(λ

∗)∩E
nλ,ε = m.

Thus there arises the problem of finding a bound for the multiplicity of F(ρ, λ) at E .

There are two different cases:

(i) f0(λ
∗) = · · · = fs−1(λ

∗) = 0, fs(λ
∗) �= 0 for some s � 0

(ii) fi(λ
∗) = 0 for all i = 0, 1, 2, . . ..
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In the first case, it is not difficult to see that the multiplicity of λ∗ is less than or equal
to s (see, e.g., [15]). Case (ii) is much more subtle, but there is a method for its treatment
suggested by Bautin [2] (see also [4, 13, 15]).

In the case when F(ρ, λ) is the Poincaré return map and E = Rn2+3n is the space of
parameters of a two-dimensional system of differential equations with polynomials of the
degree n on the right-hand side (or some subspace of Rn2+3n), the problem of multiplicity is
known as the cyclicity problem [2] and is also called the local 16th Hilbert problem [9, 11].

In the case when F = P(ρ) − 2π , where P(ρ) is the period function defined by formula
(11) and E is the centre variety of system (4), we have the so-called problem of bifurcations of
critical periods, which was considered for the first time by Chicone and Jacobs for quadratic
systems and some Hamiltonian systems [4]. The bifurcation problem for small critical periods
is analogous to the bifurcation problem of small amplitude limit cycles (cyclicity) when the
parametric space is not Rn2+3n, but an affine variety in Rn2+3n.

In [4], the problem of bifurcations of critical periods is solved for the quadratic system.
In the present paper, we investigate bifurcations of critical periods for the system with linear
centre perturbed by homogeneous cubic polynomials, namely

iẋ = x − a20x
3 − a11x

2x̄ − a02xx̄2 − a−13x̄
3. (2)

The bifurcations of critical periods of (2) have been studied in [16]. Our method, which is
based on the algorithms of computational algebra, differs from the methods used in [4, 16].

2. Preliminaries

Consider a real system

u̇ = −v + U(u, v) v̇ = u + V (u, v) (3)

where U(u, v) and V (u, v) are polynomials without free and linear terms.
Using the complex variable x = u + iv, we will write system (3) as a single equation

i
dx

dt
= x −

∑
(p,q)∈S

apqx
p+1x̄q (4)

where apq are complex coefficients, S = {(m, k) : m + k � 1} is a subset of {−1 ∪N}×N and
N is the set of non-negative integers. Due to the form of its linear part, this system (equation)
has either a centre or a focus at the origin in the real plane {(u, v) : x = u + iv}. The origin of
system (3) is a centre if all trajectories in its neighbourhood are closed and it is an isochronous
centre if the period of oscillations is the same for all these trajectories. We also know from the
Poincaré–Lyapunov theorem that (4) has a formal first integral of the form (6) (with y replaced
by x̄) if and only if the origin is a centre on the real plane u, v. In this case, the integral is
analytic, and according to Vorob’ev’s theorem [18, 1], the centre is isochronous if and only if
system (3) is analytically linearizable.

In order to investigate the period function of equation (4), we consider instead of (4) the
more general system

i
dx

dt
= x −

∑
(p,q)∈S

apqx
p+1yq = X(x, y) −i

dy

dt
= y −

∑
(p,q)∈S

bqpxqyp+1 = −Y (x, y)

(5)

where x, y, apq, bqp are complex variables. This system is equivalent to equation (4) in the
case when y = x, bij = aji . We denote by (a, b) the vector of parameters of system (5),
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(a, b) = (ap1q1 , ap2q2 , . . . , aplql
, bqlpl

, . . . , bq2p2 , bq1p1) ⊂ C2l and by k[a, b] the polynomial
ring in the variables apq, bqp over a field k.

Following Dulac [8] and basing our definition on the Poincaré–Lyapunov theorem, we
can introduce the notion of centre for system (5).

Definition 2. We say that system (5) has a centre at the origin if there is a formal power series

�(x, y) = xy +
∞∑

l+j=3

vl,j x
lyj (6)

such that ∂�
∂x

X + ∂�
∂y

Y ≡ 0.

There are different algorithms to find necessary conditions for the existence of a centre
and for linearizability (see, e.g., [5, 6, 14]). One of them is a transformation of system (5) to
the normal form

iẋ1 = x1(1 + X1(x1, y1)) −iẏ1 = y1(1 + Y1(x1, y1)) (7)

where X1(x1, y1) = ∑∞
k=1 ikk(x1y1)

k and Y1(x1, y1) = ∑∞
k=1 jkk(x1y1)

k , by means of the
change of coordinate

x = x1 +
∑

k+j�2

h
(1)
k−1,j x

k
1y

j

1 y = y1 +
∑

k+j�2

h
(2)
k,j−1x

k
1y

j

1 . (8)

We call the polynomials ikk, jkk the linearizability quantities of system (5). The resonant
coefficients h

(1)
k,k, h

(2)
k,k of the series (8) can be chosen arbitrary, but we always set them equal

to zero.
Let

G =
∞∑

k=1

gkk(x1y1)
k H =

∞∑
k=1

pkk(x1y1)
k

be the functions defined by the equations G = (X1 − Y1)/2,H = (X1 + Y1)/2. It follows
from theorem 1 below that in the case when y = x̄, the second equation is complex conjugate
to the first one given by

iẋ1 = x1(1 + G(x1x̄1) + H(x1x̄1)) (9)

where G = i Im X1 and H = Re X1.
The next statement is a version of the Poincaré–Lyapunov theorem.

Proposition 1. System (5) has a centre at the origin if and only if G(x1y1) ≡ 0.

Proof. If G ≡ 0, then x1y1 is a first integral of (7). In this case, the transformation (8) is
convergent [17, section 17], [3, sections 3 and 5] and, therefore, after the substitution inverse
to (8), we get an analytical first integral of (5) of the form (6).

On the other hand, if system (5) has a first integral (6), then G ≡ 0 [3, section 6]. �

Let x1 = r e−iθ and suppose that the system has a centre, that is G ≡ 0. Then from (9),
we obtain

dr

dt
= 0

dθ

dt
= 1 + H(r2). (10)

The period function, P(ρ), at ρ is defined to be the time by the closed orbit r(θ, ρ) while
turning once around the origin. A centre is isochronous if P(ρ) is constant. From (10), we
get

P(ρ) =
∫ 2π

0

dθ

1 + H(ρ2)
= 2π

1 + H(ρ2)
= 2π

(
1 +

∞∑
k=1

p2kρ
2k

)
. (11)
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Given polynomials f1, . . . , fs ∈ C[a, b], we denote by 〈f1, . . . , fs〉 the ideal of C[a, b]
generated by f1, . . . , fs and by V(I) the (affine) variety of the ideal I ⊂ C[a, b],

V(I) = {(a, b) ∈ C2l : f (a, b) = 0,∀f ∈ I }.
It is easily seen that the polynomials p2k are such that

p2 = −p11 and p2k ≡ −pkk mod〈p11, . . . , pk−1,k−1〉.
Obviously, the centre is isochronous if and only if p2k = 0 for k � 1 or, equivalently,
pkk = 0 for k � 1. We call pmm the mth isochronicity quantity and gmm the mth focus
quantity. They are polynomials of C[a, b]. According to proposition 1, system (5) has a
centre if and only if gii = 0 for all i � 1.

Definition 3. The set VC = V(〈g11, g22, . . . , gii , . . .〉) is called the centre variety of system (5)
and the set VL = V(〈i11, j11, i22, j22, . . . , ikk, jkk, . . .〉) is called the linearizability variety of
system (5).

Any system with coefficients from VL is linearizable in a neighbourhood of the origin by
a convergent substitution of the form (8).

Let V ⊂ C2l be an affine variety. By C[V ], we denote the ring of polynomial function
ψ : V → C on V . For any ideal H = 〈h1, . . . , hs〉 ⊂ C[V ], we define

VV (H) = {(a, b) ∈ V : h(a, b) = 0 for all h ∈ H }.
VV (H) is called a subvariety of V . It is easily seen that VV (H) is contained in V and is an
affine variety in C2l .

Consider the subvariety of the centre variety VI = VVC (P ), where P = 〈p11, p22, . . . ,

pkk, . . .〉 ⊂ C[VC] is the ideal of isochronicity quantities.
From the definitions of pmm and VC it follows.

Proposition 2. VL = VI .

For every point in VC , the corresponding system has a centre at the origin in the sense
that there is a first integral of the form (6). However, if (a, b) ∈ VC and apq = b̄qp for all
(p, q) ∈ S, then such a point corresponds to a real system of the form (4), which then has a
topological centre at the origin in the plane x = u + iv.

We will use the superscript R to denote the subsets of VC and VI corresponding to real
systems; that is, V R

C consists of those elements (a, b) in VC such that b = ā, and similarly for
V R
I .

To investigate the multiplicity (the critical period bifurcations) of the function

P(a, b; ρ) = P(ρ) − 2π

we use Bautin’s method, which is based on the following proposition.

Proposition 3. Let

�(θ, z) = f1(θ)zk1(1 + ψ1(θ, z)) + · · · + fj (θ)zkj (1 + ψj (θ, z)) (12)

where k1 < · · · < kj , θ = (θ1, . . . , θs), and fi(θ), ψi(θ, z) are series, convergent for |z| < ε,

θ ∈ Uδ(θ
∗) and ψi(θ, 0) = 0 for all i = 1, . . . , j . Then there exist 0 < ε0 � ε and

0 < δ0 � δ, such that for each θ ∈ Uδ0(θ
∗), the equation with respect to z �(θ, z) = 0 has at

most j − 1 isolated solutions in the neighbourhood 0 < z < ε0.

One can find the proof, for example, in [2, 13, 15].
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Consider a function

�(θ, z) =
∞∑

k=0

fk(θ)zk (13)

where fk(θ) ∈ R[θ1, . . . , θs] and at least one fk is not zero. Let I = 〈f0, f1, f2, . . .〉 be the
ideal generated by the polynomials fj , j = 0, 1, 2, . . ., and let Ik = 〈f0, . . . , fk〉 be the ideal
generated by the first k + 1 polynomials.

Denote by DI the basis of I that is obtained by the following algorithm.

DI := ∅; I−1 := 〈0〉; k := 0;
WHILE Ik−1 �= I DO

IF Ik �= Ik−1 THEN DI := DI ∪ fk; k := k + 1.

Note that the algorithm produces an ascending chain of ideals Ik ⊂ Ik+m and therefore it
terminates, because the ring R[θ1, . . . , θs] is Noetherian.

The next statement follows from the results of [15].

Lemma 1. Let �(θ, z) be a series of the form (13) that is convergent for |z| < ε and
θ ∈ Uδ(θ

∗). If the basis DI of the ideal I consists of n polynomials, fk1 , . . . , fkn
, then there

exist 0 < ε0 < ε and 0 < δ0 < δ, such that the number of solutions of

�(θ, z) =
∞∑

k=0

fk(θ)zk = 0

in the interval 0 < z < ε0 is less than n for all θ ∈ Uδ0(θ
∗).

Corollary 1. Assume that the coefficients fk(θ) of the series (13) are polynomials with real
coefficients and the ideal Im ⊂ C[θ ] generated by the first m coefficients is radical. Denote by
�̃(θ, z) = ∑∞

k=s+1 f̃ k(θ)zk the function �(θ, z)|V(Im), by Ĩ the ideal of coefficients of �̃(θ, z)

in C[V(Im)] and assume that the basis DĨ of Ĩ consists of t polynomials. Then the multiplicity
of (real) �(θ, z) is less than m + t .

Proof. Denote by [g] the equivalence class of g in C[θ ]/Im and assume for simplicity that
DĨ = {[fm+1], . . . , [fm+t ]}. According to proposition 3 in order to prove the corollary, it is
sufficient to show that the polynomials f1, . . . , fm+t form the basis of I = 〈f1, f2, . . .〉 ⊂ R[θ ].
Because Im is a radical ideal, we have C[V(Im)] ∼= C[θ ]/Im.

Consider a polynomial fk with k > m + t . Then

[fk] =
t∑

i=1

[αi][fm+i] �⇒ [fk] =
[

t∑
i=1

αifm+i

]

yielding

fk =
t∑

i=1

αifm+i + g (14)

where g ∈ Im. Taking into account that fj are polynomials with real coefficients, we conclude
that (14) holds also over R, that is, fk ∈ Im+t ⊂ R[θ ]. �
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3. Properties of the linearizability quantities

With system (5), we associate the linear operator L : N2l → N2,

L(ν) =
(

L1(ν)

L2(ν)

)
=

(
p1

q1

)
ν1 +

(
p2

q2

)
ν2 + · · · +

(
pl

ql

)
νl

+

(
ql

pl

)
νl+1 + · · · +

(
q2

p2

)
ν2l−1 +

(
q1

p1

)
ν2l (15)

where (pm, qm) ∈ S. Let M denote the set of all solutions ν = (ν1, ν2, . . . , ν2l ) with
non-negative components of the equation

L(ν) =
(

k

k

)
(16)

for all k ∈ N, where N is the set of non-negative integers. Obviously,M is an Abelian monoid.
Denote by C[M] the subalgebra of C[a, b] generated by all monomials of the form

aν1
p1q1

aν2
p2q2

· · · aνl

plql
bνl+1

qlpl
bνl+2

ql−1pl−1
· · · bν2l

q1p1
(17)

for all ν ∈ M. In order to simplify notation,we will abbreviate the monomial (17) with ν ∈ N2l

by φ(ν) = φ((ν1, . . . , ν2l )). For ν ∈ N2l , let ν̂ = (ν2l , ν2l−1, . . . , ν1) be the involution of the
vector ν. The result of applying the involution to the polynomial f = ∑

ν∈supp(f ) f(ν)φ(ν) is

denoted by f̂ ,

f̂ =
∑

ν∈supp(f )

f(ν)φ(ν̂).

The polynomial g ∈ C[a, b], g = ∑
ν∈supp(g) g(ν)φ(ν) (with ν ∈ N2l), is called an (m, n)-

polynomial if for every ν ∈ supp(g), the condition L(ν) = (
m

n

)
holds.

Theorem 1.

(1) The coefficients h
(1)
kn , h

(2)
kn of the transformation (18) are (k, n)-polynomials for all

(k, n) : k + n � 0, k, n � −1. The linearizability quantities ikk and jkk belong to
Q[M] for all k � 1 and are (k, k)-polynomials.

(2) The coefficients of the transformation to normal form (8) and of the normal form (7) have
the properties

h
(1)
kl = ĥ

(2)
lk ikk = ĵ kk.

The proof by induction is analogous to the proofs of theorems 1 and 2 in [14].
Define

Im(ν) := φ(ν) − φ(ν̂) Re(ν) := φ(ν) + φ(ν̂).

Corollary 2. The isochronicity quantities of system (5) are of the form

pkk =
∑

L(ν)=(k,k)t

p(ν) Re(ν).

Similar properties of the period constants were also obtained in [5]. But the definition of the
period constants given there is different from our definition. So, the period constants and the
isochronicity quantities can be different.
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4. Critical periods of system (2)

Along with system (2), we consider the more general system

iẋ = x − a20x
3 − a11x

2y − a02xy2 − a−13y
3

−iẏ = (y − b02y
3 − b11xy2 − b20x

2y − b3,−1x
3).

(18)

The following results are known.

Theorem 2 ([6]). The centre variety VC of system (18) consists of three irreducible
components:

VC = V(C1) ∪ V(C2) ∪ V(C3) (19)

where C1 = 〈a11 − b11, 3a20 − b20, 3b02 − a02〉, C2 = 〈a11, b11, a20 + 3b20, b02 +
3a02, a−13b3,−1 − 4a02b20〉 and C3 = 〈

a2
20a−13 − b3,−1b

2
02, a20a02 − b20b02, a20a−13b20 −

a02b3,−1b02, a11 − b11, a
2
02b3,−1 − a−13b

2
20

〉
.

Systems from C1 are Hamiltonian, systems from C2 have a Darboux first integral and those
from C3 are reversible.

Theorem 3 ([6]). The linearizability variety VL of system (18) consists of the following
irreducible components:

(1) b02 = a−13 = a02 = b11 = a11 = 0,

(2) b20 = b3,−1 = a20 = b11 = a11 = 0,

(3) 112b3
20 + 27b2

3,−1b02 = 49a−13b
2
20 − 9b3,−1b

2
02 = 21a−13b3,−1 + 16b20b02 = 343a2

−13b20 +
48b3

02 = 7a02 + 3b02 = 3a20 + 7b20 = b11 = a11 = 0,

(4) b02 = b3,−1 = a02 = a20 + 3b20 = b11 = a11 = 0,

(5) b3,−1 = a−13 = a02 + b02 = a20 + b20 = b11 = a11 = 0,

(6) b20 = b3,−1 = a−13 = a02 = b11 = a11 = 0,

(7) b20 = a−13 = 3a02 + b02 = a20 = b11 = a11 = 0.

We will denote by J = 〈i11, j11, i22, j22, . . .〉 the ideal of all linearizability quantities and
by Jk = 〈i11, j11, . . . , ikk, jkk〉 the ideal of the first 2k linearizability quantities. Similarly,
P = 〈p2, p4, . . .〉 is the ideal of all isochronicity quantities and Pk = 〈p2, . . . , p2k〉 is the
ideal of the first k isochronicity quantities. Using a computer, we have found the normal form
(7) of (5) up to k = 6. The expressions for i11, . . . , i44, j11, . . . , j44 are presented in the
appendix. Since the expressions for i55, i66, j55, j66 are too long, we do not present them here.
One can, however, easily compute them using any computer algebra system. We also have
checked that J5 = J6 and P5 = P6 (the latter equality holds in C[VC]).

Lemma 2. For system (18)

VL = V(J4) = VVC (P4) = VI (20)

where J4 = 〈i11, j11, i22, j22, . . . , i44, j44〉 is an ideal in C[a, b] and P4 = 〈p2, p4, p6, p8〉 is
an ideal in C[VC].

Proof. Using Singular [10], we computed the primary decomposition of J4 and found
that the associated primes are given by the polynomials defining the varieties (1)–(7) of
theorem 3. It means that VL = V(J4). Hence, taking into account proposition 2, we conclude
that (20) holds. �

To investigate the bifurcations of critical periods, we use the following method. According
to proposition 3, if we can represent the function P(a, b; ρ) in the form (12), then the
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multiplicity of P at any point is less than or equal to j − 1. We are interested in bifurcations
of critical periods for systems from V R

I ; however, we consider this variety as enclosed in VI ,
and V R

C as enclosed in VC , and we will look for representation (12) on the components of the
centre variety V(Ci) (equivalently, for the basis of the ideal P in C(V(Ci))), where V(Ci) are
the components defined in theorem 2. Because pkk are polynomials with real coefficients, if
such a representation exists in C[a, b], then it exists also in R[a, b].

In some cases, it is possible to get a bound for the number of bifurcating critical periods
without finding a basis of the ideal of isochronicity quantities by using the following lemma.

Lemma 3 ([4]). Assume thatF(ρ, λ) is defined by (1) and each fk(λ), k � 0, is a homogeneous
polynomial. If f0(λ) > 0, when λ �= 0, and if deg(fk) > deg(f0) for k > 0, then there exist
ε > 0 and δ > 0, such that for each λ ∈ Rn satisfying 0 < λ < δ, the equation F(ρ, λ) = 0
has no solutions on (0, ε).

We say that a perturbation of a system from V(Ci) is the proper perturbation if the
perturbed system is also a system from V(Ci).

Lemma 4.

(i) The first four isochronicity quantities form a basis of P in C[V(C1)].
(ii) At most one critical period bifurcates from isochronous centres of the Hamiltonian system

(2) (the component V(C1) of the centre variety) after proper perturbations and this bound
is sharp.

Proof. (i) On the component of Hamiltonian systems, we have a11 = b11, a20 = 1
3b20 and

b02 = 1
3a02. Due to corollary 1, we can assume that p2 = 0 (yielding a11 = b11 = 0). Then

we get

p2 = 0 p̃4 = (16a02b20 + 9a−13b3,−1)/12 p̃6 = 5
(
a−13b

2
20 + a2

02b3,−1
)/

3
p̃8 ≡ − 105

32 a2
−13b

2
3,−1 mod〈p2, p3〉 p̃10 ≡ 0 mod〈p2, p3〉 (21)

where p̃2k = p2k|b11=0.

To prove (i) it is sufficient to show that for k � 6p̃2k ∈ 〈p̃4, p̃6, p̃8〉.
Note that H = {(2, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 2), (1, 1, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 1, 1), (1, 0, 0, 1, 0, 1, 0, 0), (0, 0, 1, 0, 1, 0, 0, 1), (0, 0, 2, 0, 1, 0, 0, 0),

(0, 0, 0, 1, 0, 2, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, 0, 0, 1),

(0, 0, 1, 0, 0, 1, 0, 0), (0, 0, 0, 1, 1, 0, 0, 0)} is the Hilbert basis of the monoid M of system
(18) [12]. Here and below we assume the order a20 > a11 > a02 > a−13 > b3,−1 > b20 >

b11 > b02. So, for instance, we have that φ((2, 0, 0, 1, 0, 0, 0, 0)) = a2
20a−13.

One can check that(
a−13b

2
20 − a2

02b3,−1
)2 = (Im((0, 0, 2, 0, 1, 0, 0, 0)))2 ≡ 0 mod〈p̃4, p̃6, p̃8〉 (22)

a2
02b

2
20 ≡ 0 mod〈p̃4, p̃6, p̃8〉 a02b20a−13b3,−1 ≡ 0 mod〈p̃4, p̃6, p̃8〉. (23)

Using H, it is easy to see that if Re(θ) is a term of a polynomial p2k with k � 6, then θ

is of the form θ = ζ((0, 0, 2m, 0,m, 0, 0, 0)) with ζ = (a02b20)
α(a−13b3,−1)

β , where either
m � 2 or α + β � 2.

In the first case using (21), (22), the expression for p̃6 given above and the formulae

Im(ν + µ) = 1
2 Im(ν)Re(µ) + 1

2 Re(µ)Im(ν)

Re(ν + µ) = 1
2 Im(ν)Im(µ) + 1

2 Re(µ)Re(ν)



Critical period bifurcations of a cubic system 5019

we conclude that

Re(θ) ≡ 0 mod〈p4, p6, p8〉. (24)

In the second case, (24) follows immediately from (21) and (23). Thus the statement (i) is
proved.

(ii) It follows from (i) that at most three critical periods can bifurcate from isochronous
centres of Hamiltonian systems. However, the bound can be improved using lemma 3. Indeed,
observing that p4 is negatively defined (because b20 = ā02, b3,−1 = ā−13 for system (2)) and
that due to corollary 2 each p2k is a homogeneous polynomial, we conclude from lemma 3 and
corollary 1 that at most one critical period bifurcates from isochronous centres of Hamiltonian
systems (2) after proper perturbations. �

Lemma 5. No critical periods of system (2) bifurcate from isochronous centres of the
component V(C2) of the centre variety after proper perturbations.

Proof. In this case, p2 ≡ 0 and p4|{a20=−3b20,b02=−3a02} = (3a−13b3,−1 − 8a02b20)/4 �= 0 on C2,
because one of the defining equations of C2 is a−13b3,−1 − 4a02b20. Therefore, no bifurcation
is possible on C2. �

To investigate the remaining component V(C3), we need

Lemma 6. Let system a∗ correspond to the point of the centre variety in the intersections of
two sets, A and B, of the variety and assume that there are parametrizations of A and B in a
neighbourhood of a∗, such that the function P(ρ) = P(ρ) − 2π can be written in the form
(12) with kl equal to mA and mB , respectively. Then, the multiplicity of P(ρ) with respect to
A ∪ B is equal to max(mA,mB).

Proof. Apply proposition 3 to each of the functions P(ρ) at A and B. �

Lemma 7. At most three critical periods of system (2) bifurcate from isochronous centres of
the component V(C3) after proper perturbations, and this bound is sharp.

Proof. Using the implicitization algorithm for polynomial parametrization (see, e.g.,
[7, chapter 3]), one can see that

a11 = b11 = u a20 = sw b20 = w b02 = sv
(25)

a02 = v a−13 = tv2 b3,−1 = tw2

is a polynomial parametrization of V(C3). Indeed, computing a Gröbner basis of the ideal

〈a11 − u, b11 − u, a20 − sw, b02 − sv, a−13 − tv2, b3,−1 − tw2, a02 − v, b20 − w〉 (26)

with respect to lex with t > s > v > w > u > a11 > b11 > a20 > b02 > a02 > b20 >

a−13 > b3,−1, we get that it is{
a−13b

2
20 − a2

02b3,−1,−a−13a20b20 + a02b02b3,−1,−a02a20 + b02b20,−a−13a
2
20 + b2

02b3,−1,

− a11 + b11, b11 − u, b20 − w, a02 − v,−a20 + b20s,−b02 + a02s, b3,−1

− b2
20t, a−13 − a2

02t,−a−13s + a02b02t, a−13s
2 − b2

02t,

− b3,−1s + a20b20t, b3,−1s
2 − a2

20t
}
. (27)

Polynomials of the basis which do not depend on t, s, v,w, u are exactly the generating
polynomials of the ideal C3. Due to the implicitization algorithm, this means that (25) is
a polynomial parametrization of V(C3).
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After the substitution (25), we get

p4 = 1
4vw(4 + 4s + 3vwt2) ˜̃p6 = p6|u=0/(vw) = vwt(3 + s)(7 + 3s)/8

˜̃p8 = p8|u=0/(vw) ≡ 5
36vw(1 + s)(7 + 3s) mod〈p2, p4〉

(to get ˜̃p8 we have used lex with v > w > s > t). Direct calculations show that p10 ∈
〈p2, p4, p6, p8〉. Computing (e.g., with Singular [10]) one can also see that 〈p2, p4, ˜̃p6, ˜̃p8〉 is
a radical ideal and 〈p2, p4, ˜̃p6, ˜̃p8〉 = 〈u, p4, ˜̃p6, ˜̃p8〉 = √〈p2, p4, p6, p8〉 (where

√
I stands

for the radical of the ideal I ). Therefore, in order to prove that p̃2k = p2k|u=0 ∈ 〈p4, p̃6, p̃8〉
(k � 6), it is sufficient to show that it is of the form

p̃2k = v2w2fk(s, t, v,w). (28)

Indeed, if (28) holds then

p̃2k|V(〈p4,p̃6,p̃8〉) ≡ 0 ⇐⇒ vwfk|V(〈p4, ˜̃p6, ˜̃p8〉) ≡ 0.

Taking into account that 〈p4, ˜̃p6, ˜̃p8〉 is a radical ideal and using lemma 2, we get that
vwfk = p4h1 + ˜̃p6h2 + ˜̃p8h3, yielding p̃2k = vwp4h1 + p̃6h2 + p̃8h3. This implies that
p2k ∈ 〈p2, p4, p6, p8〉.

In order to see that (28) holds, we note that after the substitutions (25) with u = 0 for
every element µ ∈ H the monomial φ(µ) contains the multiple vw. Every exponent of any
monomial of p2k with k � 6 is a sum of at least two basis monomials. Therefore, p2k|u=0 has
the form (28) for all k � 6.

However, probably, the parametrization (25) does not fill up all of its variety V(C3).
Using the extension theorem [7, chapter 3], we see from (27) that if a02 �= 0 and b20 �= 0
then any partial solution (i.e., a solution to a−13b

2
20 −a2

02b3,−1 = −a−13a20b20 +a02b02b3,−1 =
−a02a20 + b02b20 = −a−13a

2
20 + b2

02b3,−1 = −a11 + b11 = 0) can be extended to the variety of
the ideal (26). However, if a02b20 = 0, then the extension theorem does not guarantee this.
Therefore, we do not know whether the parametrization fills up the entire variety.

Using the other parametrization

a11 = b11 = u b20 = sv a20 = v a02 = sw
(29)

b02 = w a−13 = tw2 b3,−1 = tv2

we get

p4 = vw(4s + 4s2 + 3vwt2)/4 ˜̃p6 = p6|u=0/(vw) = vwt(1 + 3s)(7s + 3)/8
˜̃p8 = p8|u=0/(vw) ≡ − 5

108 svw(1 + s)(7s + 3) mod〈p4, p6〉.
The ideal 〈p4, ˜̃p6, ˜̃p8〉 is a radical ideal in the ring C[w, v, s, t]; therefore, similarly as above,
we conclude that p2k ∈ 〈p2, p4, p6, p8〉 for k > 4. In this case, any partial solution with
a20 �= 0 can be extended to the entire variety.

It remains to consider the points of V(C3) where a20 = a02 = 0, which are parametrized
by

a11 = b11 = u b20 = 0 a20 = 0 a02 = 0
(30)

b02 = 0 a−13 = w b3,−1 = v.

On this set p2 = u, p4|u=0 = 3
4wv and corollary 2 yields that P = 〈p2, p4〉.

Let now a∗ be a point of V(C3) and U ⊂ V(C3) be a small neighbourhood of a∗.
Obviously, U is covered by the union of parametrizations (25), (29) and (30). Therefore,
using lemma 6, we conclude that at most three small critical periods can appear after proper
perturbations of system a∗.
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From the above expressions for p2, p̃4, ˜̃p6, ˜̃p8, it is easily seen that there are values of
parameters such that the function P(ρ) has three small zeros (or see [16] for details). �

From lemmas 4–7, we obtain

Theorem 4. At most three critical periods bifurcate from isochronous centres of system (2)
and there are systems of the form (2) with three small critical periods.

To conclude, we have presented an approach to the investigation of small bifurcations of
critical periods of polynomial systems and applied it to system (2). Our results for (2) agree
with those obtained earlier in [16] by another method. In our opinion, the main problem in
this area is to develop an algorithmic approach to precisely locate and count the ‘small’ zeros
of the period functions and the ‘small’ fixed points of Poincaré maps.
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Appendix

We present here the coefficients ikk, jkk of the normal form (7) of system (18):

i11 = a11 j11 = b11

i22 = (−4a02a20 − 4a02b20 − 3a−13b3,−1)/4

j22 = (−4a02b20 − 4b02b20 − 3a−13b3,−1)/4

i33 = ( − 6a−13a
2
20 + 4a11a20b02 − 16a02a20b11 − 20a02a11b20 − 24a−13a20b20 − 8a02b11b20

− 18a−13b
2
20 − 24a2

02b3,−1 − 11a11a−13b3,−1

− 8a02b02b3,−1 − 6a−13b11b3,−1
)/

16

j33 = (
4a20b02b11 − 8a02a11b20 − 8a−13a20b20 − 16a11b02b20 − 20a02b11b20 − 24a−13b

2
20

− 18a2
02b3,−1 − 6a11a−13b3,−1 − 24a02b02b3,−1

− 6b2
02b3,−1 − 11a−13b11b3,−1

)/
16

i44 = (
144a02a

2
11a20 + 144a11a−13a

2
20 − 96a2

11a20b02 + 96a02a11a20b11 − 216a−13a
2
20b11

+ 240a11a20b02b11 − 432a02a20b
2
11 − 288a02a

2
11b20 − 288a2

02a20b20

− 72a11a−13a20b20 − 192a02a20b02b20 − 240a02a11b11b20

− 576a−13a20b11b20 − 192a2
02b

2
20 − 516a11a−13b

2
20 − 96a02b02b

2
20

− 234a−13b11b
2
20 − 582a2

02a11b3,−1 − 132a2
11a−13b3,−1 − 660a02a−13a20b3,−1

− 192a02a11b02b3,−1 − 144a−13a20b02b3,−1 − 336a2
02b11b3,−1

− 120a11a−13b11b3,−1 + 24a02b02b11b3,−1 − 18a−13b
2
11b3,−1

− 1120a02a−13b20b3,−1 − 300a−13b02b20b3,−1 − 81a2
−13b

2
3,−1

)/
192

j44 = (
240a11a20b02b11 − 96a20b02b

2
11 − 96a2

02a20b20 + 24a11a−13a20b20 − 432a2
11b02b20

− 192a02a20b02b20 − 240a02a11b11b20 − 192a−13a20b11b20 + 96a11b02b11b20
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− 288a02b
2
11b20 + 144b02b

2
11b20 − 192a2

02b
2
20 − 336a11a−13b

2
20 − 288a02b02b

2
20

− 582a−13b11b
2
20 − 234a2

02a11b3,−1 − 18a2
11a−13b3,−1 − 300a02a−13a20b3,−1

− 576a02a11b02b3,−1 − 144a−13a20b02b3,−1 − 216a11b
2
02b3,−1

− 516a2
02b11b3,−1 − 120a11a−13b11b3,−1 − 72a02b02b11b3,−1

+ 144b2
02b11b3,−1 − 132a−13b

2
11b3,−1 − 1120a02a−13b20b3,−1

− 660a−13b02b20b3,−1 − 81a2
−13b

2
3,−1

)/
192.
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